24 June 2014
Sign up to our newsletterWant more news like this? Sign up to our newsletter.

Rubber specifications for sealing profiles

Andy Billingham, managing director of EMKA (UK) explains how sealing profiles can be specified by providing an insight into the make-up of the materials themselves with indications of likely suitability for the manufacturing sector.

Choosing a sealing profile does not have to involve choosing the material as there are many standard sections in standard rubbers found to be suitable for general purposes such as control cabinet door sealing, where specification may be made primarily on the correct mechanical fit. Even so it certainly helps to have a basic understanding of the raw materials and their compounding especially as performance in long term service can be significantly affected by material selection even in less arduous installations.

The most common chemical elements in rubber are carbon and hydrogen. The polymers of natural rubber are mainly built of these elements. In synthetic rubber these elements are products from the petrochemical industry.

Natural rubber
The rubber tree grows in tropical climates and is cultivated in many countries. The biggest producers are Thailand, Indonesia and Malaysia, which combined produce 80% of world consumption. Plantations can also be found in South America and Africa. When tapping the tree, a cut is made through the bark and the latex drips down into a cup.

A tree with a good yield can give 30-35 grams of rubber per day. The contents of the cups are emptied into containers and transported to a rubber factory. Acetic acid is added to promote coagulation. To manufacture smoked sheets, the rubber is made into sheets in a mill, washed, dried, smoked and finally classified.

With the exception of butadiene rubber, natural rubber has the best elasticity of all rubber types. It has very good resistance to abrasion and fatigue. Among the drawbacks are the material's poor resistance to ozone (weather) and oils and fuels.

Natural rubber is mainly used in the production of heavy-duty tires, vibration dampers, springs and bearings. For special purposes it is used in hoses seals, conveyor belts, coated fabrics and other products.

Styrene-butadiene rubber – the most common type of synthetic rubber.
When the automobile industry developed, demands for rubber increased sharply. Many trials were made to produce a man-made rubber. The first synthetic rubber could not match natural rubber but in the course of time several rubber types were developed that had many properties comparable with natural rubber, in some cases even better.

Styrene-butadiene rubber, the most common and cheapest synthetic rubber, serves as an example of the manufacturing principles. The basic material is derived from petroleum (oil) which is a fossil formation from organisms that have been dead for millions of years. In the distillation process at the oil refineries, styrene and butadiene are produced, which are then used as raw materials for the production or styrene-butadiene rubber.

The first step is to let styrene and butadiene react together. The new material consists of about 25% styrene, with butadiene making up the remainder. The result is a synthetic rubber that in principle has the same properties as natural rubber. Heat resistance is better but low temperature flexibility and tensile strength are less than for natural rubber. In general, around 60% of the polymers used are synthetic, while 40% is natural rubber.

Styrene-butadiene rubber is used in many of the same products as natural rubber. It is also used to cover different types of hose and in a number of other products. For practical reasons, abbreviations of the various rubber types have been internationally approved. These abbreviations are used in this presentation.

Isoprene rubber
Isoprene rubber has the same chemical structure as natural rubber (polyisoprene). However, it does not contain proteins, fatty acids and the other substances that are present in natural rubber. The physical properties of isoprene rubber are in general somewhat inferior to those of natural rubber but, in principle, the two types are very alike. Isoprene rubber is used in the same type of products as natural rubber.

Butadiene rubber
Butadiene rubber is polymerised butadiene and the most elastic rubber type. It is used in blends with other rubber types for improved elasticity, wear resistance and low temperature properties. A typical application is a blend of butadiene rubber and natural rubber in truck tires.

The above mentioned rubber types are so-called general purpose but many other types are available, each with their own special properties. The most common special types in our products are ethylene-propylene, butyl, chloroprene and nitrile rubber.

Ethylene-propylene rubber (EDM/EPDM)
For manufacture of profiles at high temperatures, ethylene-propylene rubber, with the abbreviation EPDM, is used. The first two letters mean that the rubber consists of ethylene and propylene, but the letter D tells us that a diene is also present. That third monomer makes it possible to cure the rubber with sulphur since it introduces double bonds in the structure, thereby changing the structure to an unsaturated polymer. Since ethylene-propylene rubber does not crack outdoors (good ozone resistance) it is widely used for glazing seals in buildings and in the automotive industry. Steam hoses, high temperature-resistant seals and roll covers are other applications.

Butyl rubber
Products used to prevent gases from passing through the material are based on butyl rubber. The polymer consists of isobutene with a minor part of isoprene. The isoprene makes the rubber unsaturated and possible to vulcanise. The gas permeability increases with increased temperature for all rubber types, but for butyl rubber it is very low, up to 160-175 degrees F. Tyre inner tubes are made of butyl rubber.

Chloroprene rubber
Most chloroprene rubber types are resistant to oil and weather and consist solely of polymerised chloroprene monomers. The polymer has a good resistance to the outdoor climate and reasonable oil resistance. It is therefore used in profiles and products which may be exposed to oil-based fuels.

Nitrile rubber
Nitrile rubber is a copolymer of acrylonitrile and butadiene and is suitable for use with oil. In fact it is the most common polymer for products that are in contact with oil and fuel. Nitrile rubber is used in inner tubes for fuel and oil hoses, for example.

Additives
A rubber compound used for product manufacturing contains much more than a polymer. They contain fillers such as carbon black, which is used to reinforce the compound. Whiting or clay can be used to extend the compound. Vulcanising agents can also be included and besides sulphur, accelerators are used to achieve a higher curing rate, and activators contribute to an initiation of the curing process.

Ageing protectors, such as antioxidants and antiozonants are used to protect the rubber from oxidation and ozone cracking. Softeners regulate the hardness and improve the processing of a rubber compound, for example, mineral oils, or ester, plasticers are used.

Special ingredients include pigments in light-coloured compounds, antistatic lubricants to reduce static electricity, blowing agents for sponge rubber, flame retarders to improve non-flammability.

To increase mechanical strength, many rubber products are reinforced. Typical reinforcement materials are textile and stamped steel wire and hoses, as well as glass-fibre cord. And to reduce friction on the extrudate surface a coating may be introduced, typical coatings are silicone, glycerine, flock and xylan fluoropolymer. Much more information can be found on the company's blog www.emkablog.co.uk and the website listed below.

Author
Andy Billingham, EMKA

Related Websites

http://www.emka.co.uk

Related Companies

EMKA (UK) Ltd

Similar Articles

EPDM integral gasket and spine

A spring steel spine on a P section gasket is a simple, effective way to provide an excellent gasket function for enclosure and vehicle doors. To date this has been achieved with ...

On-demand high-performance

SKF has unveiled a trio of seal profiles for its SNL plummer block housings. For distributors and end-users, an efficient and cost-effective means for their production has also ...

Time/pressure dispensing

The new ‘An Introduction to Time/Pressure Dispensing’ guide from Intertronics is a clear, simple overview for engineers needing to quickly understand this area of dispensing.

Sealing options

In the busy life of a manufacturing engineer it is easy to lose sight of standard options where the default choice will do – so it is useful to consider some simple options of ...

Ingress protection techniques

When designing manufacturing systems different IP ratings can be specified to maximise the enclosure's integrity. Chris Lloyd explains why ingress ratings work on assembly systems.

New Electronics Adhesives

Techsil has launched a range of new adhesives with low ion content which cure with UV, visible light or moisture. These products were specially formulated for electronics potting ...

3 LED Assembly Case Studies

Techsil’s materials provide environmental protection, extend service life and improve light performance of LED applications. The range includes LED chip packaging potting ...

Design & Automation

At the recent FAST exhibition, Design & Automation Solutions launched a range of automated application & assembly equipment for adhesives, gaskets, sealants & tapes such as this ...